
I. INTRODUCTION. Some graphs contain vertices which are distinguishable by virtue of certain
properties including degree, eccentricity, and distance relationships with other vertices (such as adjacencies).
Such vertices are identifiable without labels. In the graph of Figure 1, the eudvertex requires no label, nor
do the vertices at distance 1 and 2 from it, respectively. The vertex of degree 4 is also uniquely identified;
hence, the vertex of degree 2 at distance 3 from the endvertex is also identifiable. However, observe that
the two remaining vertices, x and y, are entirely indistinguishable from one another, and require that one
of them be labelled.

Figure 1

With this as out motivating idea, we define the minimum label number (MLN) of a graph as the smallest
number of vertices which must be labelled so that each vertex of the graph is identifiable (possibly with
reference to the labelled vertices). We use the notation of [1].
In this paper, we shall determine the MLN for various classes of graphs.
We conclude this section with several examples, the first of which is a graph with an MLN of zero. See

Figure 2.
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IL GRAPHS WITH SMALL MLN’S.

THEOREM 1. The MLN of the path P is 1.
PROOF. Upon labelling an endvertex, each vertex of the path is uniquely identifiable by its distancefrom the labelled vertex.

THEOREM 2. The MLN of the cycle C is 2.
PROOF. Label any pair of adjacent vertices x and y. Then every vertex of the cycle is uniquely determinedby its ordered pair of distances from z and y.
The reader is reminded that the “wheel” on n vertices, W, is obtained by joining a single vertex to eachvertex of the cycle C, i. Figure 3 shows W5.

THEOREM 3. The MLN ofW, n 5, is 2.
PROOF. The center vertex is distinguishable, as its degree is n — 1, while all other vertices have degree3. Now label two adjacent vertices of degree 3, z and y. Then any other vertex of degree 3 is identifiable byits ordered pair of distances from x and y in the graph resulting from deleting the center vertex.
A starlike graph is a tree with only one vertex of degree strictly greater than two. This vertex is calledthe junction. The paths resulting from deletion of the junction are called branches.
THEOREM 4. Let G be a starlike free all of whose branches have different lengths. Then the MLN ofG=O.
PROOF. The junction requires no label, nor do the endvertices, since each one has a unique distancefrom the junction. Any other vertex has a unique distance from the endvertex of the branch on which it lies.
III. MLN’S OF TREES. A star on n vertices, S, is a graph with only one vertex of degree strictlygreater than one. Figure 4 depicts S7.
THEOREM 5. The MLN of S is n —2.
PROOF. The center is the only distinguishable vertex, while the remaining a — 1 vertices clearly requiren — 2 labels, since one of them is identifiable by its not being labelled.
A starlike tree with k branches such that each branch has the same length is called a k-equibranchedstarlike tree. We then have the following theorem:

THEOREM 6. The MLN of a k-equibranched starlike tree is k — 1.PROOF. Label k — 1 of the endvertices, and proceed as in the proof of Theorem 4.
REMARK. Given a starlike tree G, with i branches of length L1, 2 branches of lengthL2,..., and 83branches of length L3, where the L’s are all unique, then by an argument similar to that of Theorems 4 and

Figure 3
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6, the MLN is

(t) —i.

Figure 4

We now present an upper bound for the MLN of any tree.

THEOREM 7. Given a free T with s endverices, then MLN(T) s — 1.
PROOF. We proceed using induction on r, the radius. When r = 1, the tree is a star, and the theorem

follows by Theorem 5. Assume the theorem is true for r < r0.
Given a tree T with radius r0 + 1, label all but 1 eudvertex. Let S be the set of all vertices of T which

are adjacent to any endvertex. Then all the vertices of S are distinguishable (since no endvertex can have
more than one neighbor). Now let T’ be the tree from T by deleting its endvertices.
Note that the radius ofT’ is ro, and that its endvertices are exactly the members of S. It follows, by the

inductive hypothesis, that all the vertices of T’ are identifiable. Hence S0 are the vertices of T. Since the
cardinality of S is less than or equal to the number of endvertices of T, the theorem follows.

IV. HYPERCUBES. The hypercube Q is defined recursively. Qi is a copy of K2. We obtain Q2 by
taking two copies of Q and connecting corresponding adjacent vertices as shown in Figure 5.

r:=:zi

(a) (b)

Figure 5

Observe that Q, defined similarly by connecting corresponding vertices of two copies of Q2, is the highest
order hypercube which is planar. Figure 6 depicts a planar drawing of Q.
Notice in Figure 5(b), that there are two ways to divide Q2 into two copies of Qi. The dashed lines could

be thought of as the two copies of Qi with the solid lines as their connecting edges, or vice-versa.
We can analogously find three different ways to divide Q. By placing the second copy of Q2 inside the

first copy, we can easily show divisions along the vertical, horizontal and diagonal lines of Q. See Figure 7.
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Figure 6

Figure 7

THEOREM 8. The MLN ofQ is n.
PROOF. We shall outline an inductive procedure. Label one vertex of Q, A. In advancing to Q2, retain

the label A, and label any adjacent vertex B. The new label B together with A, define a division of Q2 into
two copies of Qi, the copy containing A, and the copy containing B. When we advance to Q, we retain our
Q2 labelling and label a new neighbor of A by C. See Figure 8.
Observe that C effects a division of Q into two Q2’s: (1) the copy of Q2 containing A, and (2) the copy

of Q2 containing C.
This labelling is adequate since A and B suffice for the previous copy of Q2, while vertices in the C copy

(or new copy) are identifiable through the vertices of the old copy to which they correspond. This process
is extendable for all n, in which case we see that n labelled vertices suffice.

(a) (b)

(c)



Figure 8

To show that n vertices are required, recall that there are n ways to divide Q, into two copies of Q, -.i.
Each division is accomplished by deleting 2’’ edges comprising a “dimension set.” Given n — 1 or fewer

vertices, not all divisions can be specified, thus making it impossible to distinguish all vertices.

The Ternary cube T is defined by T1 = K3 and T = T..1 x K3. Figure 9 shows T1 and T2.

The MLN of T is clearly bounded above by 2n, since T1 has an MLN of 2, and if T has an MLN of 2n

then 2 more vertices in T,+1 determine, together with 2n labelled vertices of one copy of T, three copies of

T and hence determine all the vertices of T÷1.We ask if in fact this is the MLN of T.
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